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Abstract. The wavevector-dependent spin au1m"'eIation function of a classical Heisenberg 
model on a square lattice is calculated kom the coupled-mode theory of spin dynamics. Th3s 
theary is consistent with the spherical model for static spin carrelations; as the temperam, 
T, approaches zero ule inverse correlation length Y - exp(-consl/T). For a fermmagnetic 
a c h g e  coupling, the decay rate of long wavelength EucNations, r(q), is proportionnal 
to q2T'I2 in the limit ( q / K )  --f 00, whereas in the oppoiile, hydrodynamic limit r(q) OL 

q2(T ln(~ /q ) ] ' / 2 .  At the wavevector for incipient antifemmagnetic ordering. the decay 
is proportional to Y T ' / ~ ,  wMe the corresponding decay rate near the Brillouin zone 

centre is proportional to ( q 2 T 1 n / ~ ) .  The coup1ed.de equations for fenomagnetically and 
antifemmagnetically coupled models are solved numerically on a fine grid of wavevectm. 
The spin automrrelation function, and its power specbum are surveyed over a wide range of 
t empawes  and wavevectm. 

1. Introduction 

Magnetism in two dimensions is known to possess a variety of subtle features. Perhaps 
the best known, and the most firmly established, example is that the isotropic Heisenberg 
model does not support magnetic long-range order at a finite temperature (Mermin and 
Wagner 1966) whereas the king model orders at a finite temperature. However, it bas been 
conjectured that the Heisenberg model at a finite temperature has a phase transition for which 
the susceptibility is infinite. To date, the type of transition in question, where the signature 
is an infinite correlation length without magnetic ordering, has only been established for an 
anisotropic version of the model (Berezisnkii 1971, Kosterlitz and Thouless 1973). These 
and other features of magnetism in two dimensions are reviewed by Mattis (1985). 

Here, we address the nature of time-dependent spin correlations in the classical 
Heisenberg model on a square lattice. In our calculations, the equilibrium spin comlations 
are described by the spherical model. This estimate of the correlations is consistent with 
the Mermin-Wagner theorem (1966) since the spherical model has no phase transition for 
spatial dimension < 2. For two dimensions, as the temperature, T, approaches zero the 
correlation length is proportional to exp(const/T). 

We describe time-dependent spin correlation functions by the so-called coupled-mode 
theory of critical and paramagnetic fluctuations. For threedimensional magnets, this theory 
is unrivalled in its quantitative value (Cuccoli et al 1989). 

In subsequent sections, the spin autocorrelation function F(q ,  t) is calculated for the 
full range of wavevectors in the Brillouin zone. Temperatures span the range T = w 
down to a value where the correlation length is approximately 30 times the lattice spacing. 
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Both ferromagnetic and antiferromagnetic exchange models are treated. In addition to 
F(q ,  t) ,  equal attention is given to its power spectrum S(q, w) which is proportional to the 
signal monitored by inelastic neutron scattering from a simple magnetic material (Collins 
1989). (As of now, no magnetic material has been discovered which is well described 
by the isotropic two-dimensional Heisenberg model. The quasi-two-dimensional magnets 
that have been studied possess significant magnetic anisotropy, which has a pronounced 
influence on the observed static and dynamic spin response functions.) 

The Heisenberg magnet, spherical model, and coupled-mode theoq are introduced in 
sections 2 and 3. Numerical results for F(q ,  t) and S(q, w )  are reviewed in section 4. 
Estimates of the decay rates given in section 5 characterize the very low temperature spin 
dynamics. Our findings are discussed in section 6. 

S W Lovesey et al 

2. Model 

Unit vector spins, IS,), are arranged at sites labelled by the index a on a square lattice with 
a unit length a. Nearest-neighbour spins interact through a Heisenberg exchange interaction 
of strength J. Hence, the Hamiltonian of OUT classical two-dimensional model is 

Here, the sum is restricted to all pairs of nearest neighbours. The upper and lower signs 
(zk) in (2.1) will be referred to as antiferromagnetic and ferromagnetic exchange couplings, 
respectively. 

The theory utilized to describe the dynamic properties of (2.1) is consistent with the 
spherical model of equilibrium spin correlations. In this model, the isothermal susceptibility, 
x(q). is expressed in terms of a dimensionless parameter, p, which is related to the 
temperature, T(kB = A = 1). Let us define 

Y* = ~~cosaoQI+c0sao~,) .  (2.2) 

The spherical model susceptibility is 

X(P) = ( 4 J b  f v&-' 
and p satisfies the transcendental equation 

(2zpJ/3T) = K(l/cc) 0 .4 )  

where K ( x )  is the complete elliptic integral. Figure 1 shows graphically the relation between 
p and a reduced temperature variable e = (3T /4J) .  As 0 approaches zero, p tends to unity 
from above, and for a sufficiently small 0, which is found to be 0 < 0.6, 

(p - 1) - 8 exp(-n/O). (2 .3  
At low temperatures, the susceptibility is peaked at q = 0 (tu = a(1, l)/*) for a 

ferromagnetic (antiferromagnetic) exchange couplig. Near these special wavevectors one 
obtains an Omstein-Zemike expression for the susceptibility 

(2.6) 2 -1 X(4)  {J&K2 f 4 )) 
in which the inverse correlation length, K ,  satisfies 

aoK = 2(p - 1)''' - 4Jzexp(-x/2~)  e + 0. (2.7) 
Representative values of e and K as a fnnction of p are given in table 1. 
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figure 1. A graphical representation of the relationship 
between the reduced t e m p e m  e = (3T/4J)), and 
the parameter p which arises in the spherical model; 
1 = Or@) where I (p)  is the extended Watson integral 

0 
0 2 4 

Dimensionless temperature 8 . (3.7). 

lhble 1. Representative values of the reduced temperature, 8 = (3T/4J), and the inverse 
correlation length, K, as a function of the dimensionless parameter p that arises in the spherical 
model of spin conelatiom, as seen in figure 1. 

U e M Y  

1.001 0.350 0.063 
1.01 0.472 0.200 
1.03 0.569 0.346 
1.10 0.744 0.632 
3.0 2914 2.288 

3. Coupled-mode theory 

The coupled-mode theory of critical and paramagnetic spin fluctuations is reviewed in 
several articles, e.g. Lovesey (1986) and Cuccoli etal (1989). In view of this, the following 
account is very brief, and aims to do no more than define our notation and essential equations. 

Our spin autoc~rrelation function, F ( q ,  t), is normalized to the value one at time t = 0 
for all values of the wavevector, q. Denoting the thermal average of variables by angular 
brackets 

F ( q ,  t )  = (S(P. t )  . S(q. 0))/3Tx(q) (3.1) 

where S(q, t) is a spatial Fourier component of the spin density, and x(q) is the isothermal 
susceptibility introduced in the pevions section. 

Coupled-mode theory can be viewed as a closure approximation to the infinite hierarchy 
of equations of motion for spin variables in the model (2.1). The corresponding set of 
equations for F(q ,  t )  are conveniently expressed in terms of a memory function, K ( q ,  t) ,  
which is defined through the equation 

& F ( q , t )  = - dt’F(q,t’)K(q,t-t’). I‘ 
In this format, closure is expressed as an approximation to K ( q ,  t )  in terms of a spatial 
convolution of the product of two spin autocorrelation functions. A useful form of the 
expression for K(q ,  t) is 
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Here, the susceptibility is defined by (2.3), and N is the number of spins on the square 
lattice. 

S W Lovesey et a1 

An expansion of F ( q ,  t) in powers o f t  begins with the terms 

F(q,  t )  = 1 - 4(two)Z + . ’. . (3.4) 

From the defining equation (3.2) it follows that the second frequency moment, w$(q), in 
(3.4) is the initial value of the memory function, namely 

K ( 4 ,  0) = &4). (3.5) 

The expression (3.3) provides the estimate 

w&7) = 2T(1 - Y.?)(lLI(1L) - l ) / X ( P )  (3.6) 

in which I (p) is the extended Watson integral. For the square lattice, I (w) can be expressed 
in terms of the complete elliptic integral, encountered already in section 2, 

I ( w )  = 2K(l/P)/ZP. (3.7) 

4. Numerical results 

Numerical results for F ( q ,  f )  have been obtained from (3.2) and (3.3) using a method 
described by Cuccoli et al (1989). In the present case, the Brillouin zone is spanned by 
a mesh of equal square elements with a side of length ( ~ / 2 4 ~ ) .  Results for F(q, t )  are 
given at three wavevectors denoted by 41, qz and 43; in units of (ir/24ao) these vectors 
are q1 = (1, l), 42 = (12.12) and 43 = (24.24). Note that, 43 is the ferromagnetic zone 
boundary, and also the incipient antiferromagnetic ordering wavevector, i.e. q3 = w and 
yw = -1. The wavevector 42 = ~ $ w  is the antiferromagnetic zone boundary at which 
ys = 0. Perhaps it is useful to observe that, in the limit of very low temperatures, the 
second frequency moment, &q), given in (3.6) is proportional to the square of the spin- 
wave frequency, i.e. w&l- y*)* and o$a(l- y:) for ferromagnetic and antiferromagnetic 
exchange couplings, respectively. This result leads us to expect that at low temperatures 
the response function 

a3 

S(q, w) = (l/2n) / dt exp(-iwt)F(q, t )  
-m 

is very narrow for small q, e.g. 91. For antiferromagnetic coupling, S(q, w )  will also be 
narrow at 43, and relatively broad at 42. On the other hand, for ferromagnetic coupling the 
response function will broaden steadily by increasing q from zero through to 43. 

At infinite temperature the properties of the Heisenberg model are independent of 
the sign of the exchange interaction, i.e. they are the same for ferromagnetic and 
antiferromagnetic interactions. Hence, the infinite temperature limit provides a sensible 
starting point for a study of dynamic spin fluctuations in the two model systems. Results 
for F ( q ,  t )  and S(q, w )  for T = 00 are shown in figures 2 and 3. Looking at F(q ,  t). the 
decay rate increases with increasing q and oscillations occur for the two largest wavevectors. 
Therefore, the corresponding response functions differ significantly from a Gaussian function 
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Two-dimensional antiferromagnet Two-dimensionarantiferromognet 

Time Angulor frequency 

Kme Angulor frequency 

F i y r e  2. P(q,  1) is displayed as a function of time for 
fhree wavevecton: (a) 41. (b) QZ, (c) 93, as specihed 
m section 4. Three temperatures are used, p = 1.01, 
1.10 and m as seen in table 1. The exchange coupling 
is antiferromagnetic, Solid line. p = m; dashed line, 
p =  1.10;dash-dotline,p= 1.01. Theenergymnstvlt 
satisfies 45 = 1, and the unit increment of time in the 
plots is 1.330. 

Angular frequency 

Figure 3. The response function (power specr") 
dehned by (4.1) is displayed for the states used in 
figure 2. The unit increment of frequency in the plois 
is 0.752, and 45 = 1. 

of w, which might be one's first guess for the shape of the response function at infinite 
temperature. 

Figures 2 and 3 also contain results for F ( q ,  f )  and S(q, o), respectively, at low 
temperatures, as seen in table 1. The dramatic changes in S(q3.w) with decreasing 
temperature are a signature of incipient antiferromagnetic ordering. Looking at the 
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corresponding values of F(q3, i) in figure 2(c), the slowing down of spin fluctuations with 
decreasing temperature is readily apparent. By comparison with what is found at q 3  = Y 

as a function of temperature, the fluctuations at qz = f w  are relatively benign functions 
of the temperature. The ‘squaring up’ of S(qz, U )  with decreasing temperature might be 
interpreted as a premonition of a collective spin oscillation (spin-wave) in the ordered state. 
Turning attention to the smallest wavevector, 91, the decay rate increases with decreasing 
temperature, which is the opposite of the kend at qI for a ferromagnetically coupled system. 

Data for a ferromagnetic exchange coupling are displayed in figures 4 and 5. Slowing 
down of the spin fluctuations with decreasing temperature is quite apparent at 41. However, 
the changes in F ( q ,  t )  and S(q, w )  at all three values of q brought about by decreasing the 
temperature from p = 1.1 (8 = 0.744) to p = 1.01 (8 = 0.472) are quite modest. Results 
for p = 00 (8 = w) are included for comparison. 

At very low temperatures, such that QK << 1, there is a dramatic slowing down of 
spin fluctuations at the wavevector which defines the incipient ordering. The decay rates at 
these special wavevectors are obtained from coupled-mode theory by an analysis which is 
outlined in the next section. 

S W Lovesey et a1 

5. Decay rates 

For a ferromagnetic coupling, the numerical results display the anticipated slowing down 
of long wavelength fluctuations as the temperature is decreased. This process in the 
autocorrelation function can be characterized by a decay rate, r(q), which we will now 
estimate. 

In the limit of low temperature and small q. equation (3.3) for the memory function 
approaches the result 

Here, the inverse correlation length, K, is determined as a function of temperature by relation 
(2.7). When the integral on the right-hand side of (5.1) is dominated by the slow processes 
at long wavelengths, the associated decay rate satisfies the integral equation 

r(q) = Aoq2(q2 + K’) kdk/{r(k)(KZ + k2)} 1 
where Ao is proportional to the temperature. For a square lattice 

Ao = (JTa@r).  (5.3) 

One finds the following limiting forms for the decay rate: 

(a) (,c/q) + w; the hydrodynamical l i t  

r(q) - sZ{2Aoln(~/q)}”z (5.4) 

and 
(b) ( ~ / q )  + 0; the critical l i t  

Uq) - ~ ~ ( A o / 2 ) ” ~ .  (5.5) 
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PNo-dimensional ferromagnet 

l ime 

0 5 10 15 

Time 

0 5 10 15 

l ime 

'Two-dimensional ferromagnet 

Angulor frequency 

Angulor frequency 

Angular frequency 

Figure 4. This figure and figure 5 show F(q, r) 
and S(q. o) for a ferromagnetic exchange. The three 
wavevectors used are defined in section 4. The 
tempmatures are p = 1.01 (e = 0.472). 1.10 (0.744), 
and p = m: Ule LabeUing of the different types of lines 
are defined in the caption to figure 2. 

As might be expected, in the critical limit the decay rate does not depend explicitly 
on the inverse correlation length. The results (5.4) and (5.5) are limiting cases of the 
general solution to (5.2). For the latter, it is prudent to introduce a dimensionless variable 
5 = ( q / K ) * .  We find 

Figure 5. Values of S(q, m) obtained Gom the data for 
F(q, I) shown in figure 4. 

r(4) = 4 2 ~  + F){Ao[ln(l+ I /<)  - w +  S)II'/~ (5.6) 

in which A0 is defined by (5.3). 
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The corresponding analysis for the antiferromagnetically coupled model is slightly more 
complicated. One needs equations for the decay rates at the zone centre, ro, and at the 
ordering wavevector, r. The necessary equations for r(q) and ro(q) are formed from (3.3) 
by using the reasoning that leads to (5.1) which is valid for ferromagnetic coupling. (NB, 
in r(q) the wavevector q is measured from the antiferromagnetic ordering wavevector, w.) 
After some algebra, one finds 

r(q) = W ( I +  ( q / K ) 2 ) ( J n " z  (5.7) 

(5.8) 

Hence, at the ordering wavevector the temperature dependence of the decay rate is provided 
by KT'P ,  i.e. a slowing down occurs as the temperature tends to zero. Near the zone centre, 
for a fixed wavevector the decay rate increases with decreasing temperature. 

6. Discussion 

To the best of our knowledge, this is the first report of results from coupled-mode theory 
applied to the classical Heisenberg magnet in two dimensions. Given the unmatched 
success of coupled-mode theory to describe critical and paramagnetic fluctuations in three- 
dimensional magnets, there is, clearly, good reason to believe that the theory yields a 
reasonable account of fluctuations in the case of a two-dimensional system. Looking at ow 
results for the ferromagnetically and antiferromagnetically coupled systems, all features are 
in accord with physical intuition. However, as a caveat to our confidence, in coupled-mode 
theory applied to a spatial dimension less than three, recall that the standard coupled- 
mode theory, which is used here, is known to fail in one dimension. In this case, it does 
not reproduce the weakly damped collective spin oscillations, reminiscent of linear spin 
waves, that are known to exist at low temperature. For our two-dimcnsional model, at the 
lowest temperature investigated, 6 = 0.308, there is no collective mode peak in S(q, o) at 
q = w(w/2) for ferromagnetic (antiferromagnetic) coupling. 

For a ferromagnetically coupled system the decay rate of long wavelength fluctuations 
is proportional to q2T'Iz if the wavevector, q, is large compared to the inverse correlation 
length, K. In the other extreme, q << K, there is a logaritbmic correction to the expected 
$-dependence, namely, r(p) a q'{T h ( K / q ) ) ' / ' .  This implies that, for ferromagnetic 
coupling, the conventional theory of spin diffusion does not apply. At the wavevector at 
which there is incipient antiferromagnetic ordering, the decay rate decreases with decreasing 
temperature, and we find a temperahue dependence given by KT'P .  Near the zone 
centre, the decay rate of the antiferromagnetically coupled system increases with decreasing 
temperature, namely, r o w  a q'T'/'/K. 

For a complete picture of the spin dynamics the coupled-mode theory must be analysed 
by a numerical method. We provide a comprehensive survey using a wide range of 
temperatures and wavevectors. 
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